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Abstract  

Tomato (Solanum lycopersicum) is one of the world’s most preferred vegetable crops which is extensively damaged 

by lepidopteran insect pest, Helicoverpa armigera Hubner (tomato fruit borer). Insect pest causes serious damage in 

crop production, and various attempts have been 

made to produce insect-resistant crops, including the expression of genes for proteins with 

anti-herbivory activity, such as Bt (Bacillus thuringiensis) toxins. In order to mitigate this problem, an attempt was 

made to generate transgenic tomato plants resistant to fruit borer. Cotyledonary explants of tomato cv. Arka vikas 

were co-cultivated with Agrobacterium tumefaciens strain, LBA4404 harbouring a codon-optimised chimeric 

cry2AX1 gene driven by enhanced CaMV35S promoter in pCAMBIA2300 vector backbone. Seventy-six putative 

transgenic plants were regenerated, and the presence of the cry2AX1 gene in twenty eight plants was demonstrated 

by PCR analysis. ELISA showed that nine out of the twenty-eight plants had detectable level of Cry2AX1 protein 

expression, which ranged from 0.022 to 0.359µg/g of fresh tissue. Insect bioassay of transgenic T0 tomato plants using 

H. armigera neonates recorded a mortality of 36.67 to 90 per cent and showed significant reduction in leaf feeding 

and inhibition of growth in surviving larvae. The results demonstrated the potential of the chimeric cry2AX1 gene in 

developing H. armigera resistant transgenic tomato varieties which can minimize the effect of climate change and 

decrease in beneficial soil flora through the use of synthetic chemicals.  
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1. Introduction  

Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family, and it is also a nutritionally important 

vegetable crop that is produced globally. It is cultivated as an annual crop which can successfully in both 

temperate and tropical conditions [1]. It is the world’s largest vegetable crop after potato, and it tops the 

list of canned vegetables [2]. The cultivated tomato, Solanum lycopersicon, serves as a model plant species 

a well-studied crop species that is used for various research investigations including understanding of 

genetics, genomics, and breeding [3]. 

Genetic transformation is a vital process in plant molecular genetics and plant improvement. On a regular 

basis, agrobacterium-mediated transformation is used to introduce a foreign gene into the genome of 

plants, such as tomato [4, 5]. The insertion of a gene from Bacillus thuringiensis (Bt) that produces Cry 

proteins which are lethal to certain insect (Lepidoptera, Coleoptera and Diptera) families. These insecticidal 

crystal proteins selectively bind to insect midgut receptors and insert into the gut cell membrane, thereby 

causing the formation of pores in membrane leading to cell lysis and insect death [6]. Since the first 

transgenic tomato was developed about 30 years ago, significant improvement in the genetic 

transformation of tomato has been achieved in recent years [7].  
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One of the major limiting factors affecting tomato production worldwide, is the incidence of pests, often 

infesting or attacking at different stages of growth and development [8]. Some of the invading insect pests 

include tomato fruit borer (Helicoverpa armigera), jassid (Amrasca biguttula biguttula), whitefly (Bemisia 

tabaci), mite (Tetranychus urticae), aphid (Myzus persicae) and leaf miner (Liriomyza trifolic). Among all, 

tomato fruit borer, Helicoverpa armigera (Hub.) is an important lepidopteran pest responsible for severe 

yield loss which affects food security. Incidence and abundance of tomato fruit borer, Helicoverpa armigera 

(Hubner) is dependent on both the climatic parameters and the growth stage of the tomato crop. 

Pesticides application is an option and indiscriminate use, and misuse of pesticides results in adverse 

effects on the beneficial organisms, leading to resurgence and secondary outbreak of pest besides leaving 

residue in the edible fruit security [9].  

Tomato engineered with different insecticidal protein gene(s) from Bt has been reported to 

provide adequate protection to plants against different lepidopteran insect pests [10, 11]. Due to the 

difference in structure and insecticidal activities, cry2A genes are suitable candidates for the management 

of insects in crop plants [12]. The chimeric Cry2AX1 protein was observed to be more lethal than its 

parental proteins (Cry2Aa and Cry2Ac) [13]. Considering these facts, the present study was conducted to 

develop transgenic tomato plants expressing cry2AX1 gene, using Agrobacterium mediated transformation 

method and to evaluate the efficacy of cry2AX1 expressed in tomato events against H. armigera. 

2. Materials and Methods 

2.1. Preparation of explants 

Genetically pure seeds of tomato cv. Arka vikas were gotten from Horticultural College and 

Research Institute, Tamil Nadu Agricultural University, Periyakulam, Tamil Nadu. The seeds were 

soaked in water containing a few drops of tween 20 for five min and subjected to forceful shaking for 

another 5 min. Seeds were treated with seventy (70) per cent ethanol for 5 min and were washed with 

sterile water thrice. The seeds were further subjected to four (4) per cent sodium hypochlorite for 8 min 

with occasional whirling followed by doubled distilled water wash thrice. The seeds were blot dried on a 

sterile tissue paper and placed on half strength MS medium (Murashige and Skoog, 1962) for germination 

under sterile condition. The bottles were kept in the dark for a period of 72 hours followed by a cycle of 

16 hours photoperiod using cool white fluorescent tube light (110-130 nM/m2/s intensity) and eight hours 

of darkness at 26˚C in a plant growth chamber (Panasonic, Japan). Cotyledonary explants were collected 

from 7 day-old in vitro grown seedlings (Figure 2A). The distal and proximal ends (1-2 mm) were cut off 

and the explants were cut into two pieces (Figure 2B) before placing them on the pre-culture medium (MS 

medium modified with Gamborg B5 vitamins containing 1 mg/L zeatin) [14]. They were handled gently 

with flat forceps to avoid any injury and were pre-cultured for a day under light prior to co-cultivation. 

2.2.  Binary vectors and strain 

The pC2300-2AX1 construct containing cry2AX1 gene (Figure 1) was used in transformation experiments. 

The gene of interest was placed under the control of EnCaMV35S promoter and nos-polyA terminator in 

binary vector, pCAMBIA 2300 backbone. The vector which harbored the neomycin phosphotransferase 

(nptII) gene driven by CaMV35S promoter, conferring resistance to kanamycin which was used for plant 

selection. Independently, the construct was mobilized into Agrobacterium strain LBA4404 by triparental 

mating and the Agrobacterium transconjugants were grown on LB (1% Yeast extract, 1% Peptone and 0.5% 

NaCl pH 7.2) medium containing kanamycin 100 mg/L, tetracycline 5 mg/L and 10 mg/L rifampicin in a 

28°C incubator shaker at 200 rpm for 48-72 hours and used for tomato transformation. 
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Figure 1. Schematic representations of T-DNA region of the plant transformation construct pC2300-

En35S-2AX1-Tnos 

LB: left border, poly A: CaMV35S terminator, nptII: neomycin phosphotransferase gene, CaMV35S2: 

Cauliflower mosaic virus 35S duplicated promoter, EnCaMV35S: Enhanced cauliflower mosaic virus 35S 

promoter, cry2AX1: gene of interest, Tnos: nopaline synthase terminator, RB: right border 

2.3. Agrobacterium-mediated transformation of tomato 

A single colony of Agrobacterium, containing LBA4404 (pC2300-2AX1) gene was inoculated in sterile 3 mL 

LB medium (Yeast extract, Peptone and NaCl) containing kanamycin 100 mg/L, tetracycline 5 mg/L, and 

rifampicin 10 mg/ml, was allowed to grow overnight in an incubator shaker at 28°C and 180 rpm. From 

the overnight culture, an aliquot of 700 µl was inoculated into 30 ml LB with same antibiotics and 

conditions and grown for 6-8 hours. The bacterial pellets were harvested by centrifugation at 4,000 rpm 

for 10 min. The pellet was re-suspended in 40 ml of infection medium (modified MS containing 100 µM 

acetosyringone). Agrobacterium density in the suspension was maintained at 0.9 OD at 600 nm. The pre-

cultured explants were carefully submerged in the suspension in a sterile petri plate for an infection time 

of 30 min with gentle agitation. Post infection, explants were blotted on sterile tissue paper and 

transferred onto co-cultivation medium (MS medium modified with Gamborg vitamins containing zeatin 

1 mg/L and 100 µM acetosyringone). Plates were kept under dark condition in a growth chamber for 48 

hours. 

2.4. Regeneration of the transformed explants 

After the co-cultivation period, the explants were washed in a washing medium (modified 

MS containing 200 mg/L timentin) to kill the Agrobacterium, blot dried and sub-cultured on selection 

medium (MS modified with Gamborg vitamins containing kanamycin 100 

mg/L, zeatin 1 mg/L and 200 mg/L timentin) for shoot bud initiation and were maintained 

under 8/16 dark light cycle. The explants that responded well (Figure 2C) were sub-cultured 

continuously onto fresh medium, and later transferred to shoot elongation medium (MS 

modified with Gamborg vitamins containing kanamycin 100 mg/L, zeatin 0.5 mg/L and 

200 mg/L timentin) for elongation. Elongated shoots (2-3 cm) (Figure 2D) were transferred 

to the half MS basic medium, supplemented with IBA (1 mg/L) for rooting and maintained 

under 16 hours light and 8 hours dark. Shoots with no sign of rooting after 21 days were discarded. Well 

rooted and established plants (Figure 2E) were hardened in transgenic greenhouse in small cups 

containing autoclaved coconut peat mixture covered with a polythene cover to maintain humidity. Well-

established plants were transplanted into bigger pots and 

maintained in transgenic greenhouse (Figure 2F). 
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2.5. Molecular characterization of transformants  

2.5.1. DNA isolation and PCR analysis 
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Genomic DNA was isolated from leaves of putative transgenic and non-transgenic tomato plants using 

CTAB (cetyltrimethyl ammonium bromide) protocol, which is a modification of the method of [15]. 

Presence of transgene was confirmed by using cry2AX1 gene specific primers (Forward 

5’CCTAACATTGGTG GA CTTCCAG 3’ and Reverse 5’ GAGAAACGAGCTCCGTTATCGT 3’) and nptII 

gene specific primers (forward primer 5’- 

AGAACTCGTCAAGAAGGCGA and reverse primer 5’-CAGACAATCG GCTGCTCTGA). The plasmid 

DNA was used as positive control. The PCR for both sets of samples was carried out in 50 µl reaction 

volume containing, 2.5 µl of 10X Taq buffer, 75 μM each of dNTPs, 50 ng each of forward and reverse 

primers and 1.5U of Taq DNA polymerase and incubated in a 

thermal cycler which was programmed for 5 min preheat at 94°C and then 35 cycles of 

denaturation at 94°C for 1 min, annealing temperature of 58°C for 45 sec and extension 

time of 45 sec at 72°C, with a final extension at 72°C for 7 min. The PCR products were 

run on 0.8 % agarose gel, visualized and documented in gel documentation system. 

2.5.2. ELISA Analysis 

A double-antibody sandwich Enzyme Linked Immuno Sorbent Assay (ELISA) was used to 

detect and quantify the Cry2AX1 protein expressed in the leaves of transgenic tomato plants. Cry2A 

quanti-plate (Envirologix, USA) ELISA kit was used for the experiment. 

Proteins from fresh leaf samples of transformed and untransformed tomato plants 

were extracted and used for detection of Cry2AX1 protein as per the manufacturer’s 

protocol. The OD was measured at 450 nm using an ELISA reader (Biotek, USA). The quantity of 

Cry2AX1 protein present in the sample was calculated by referring to standard graph 

generated with Cry2A calibration standards and represented in µg/g fresh weight of leaves. 

2.6.  Insect Bioassay 

Detached leaf bit bioassay was carried out to determine the level of insect resistance in 

ELISA positive T0 transgenic tomato plants with H. armigera neonates under laboratory condition. Leaf 

bits (1.4 cm diameter) from both the transgenic and control plants were placed in a damp filter paper on 

petri plates. Ten neonate larvae of H. armigera were released per 

replication and three replications were maintained in each line. The experiment was carried out at 27 ±10C 

and 65 per cent relative humidity. Larval mortality was recorded after 48 hours at 24 hours interval for 

six days. 

Statistical analysis 

The experimental data values of Cry2AX1 protein concentration and mortality of H. 

armigera were mean values from three replicates. All mortality data were subjected 

to arcsine transformations before analysis. Data analysis was done by analysis of variance (ANOVA) 

following the AGRES statistical package. Mean values were separated by Duncan’s multiple range test 

(DMRT) at a 5 per cent probability level (Duncan 1955). 

3.0. Result  

3.1. Plant regeneration of co-cultivated explant 

A total of seven six (76) putative transgenic tomato plants were regenerated out of five hundred and one 

(501) cotyledons that were co-cultivated C2300-2AX1 construct. They are regarded as independent plant 

since they were derived from different co-cultivated explants. 

 PCR analysis 
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The seventy-six putative T0 transgenic tomato plants generated were screened for the presence of 

cry2AX1 gene and nptII gene with gene specific primers focusing on the coding region of 

cry2AX1 and nptII gene, respectively. Figure 3a and 3b (representation) reveled twenty-eight transgenic 

plants generated with `pC2300-2AX1 construct were found positive for PCR showing an amplification at 

the expected size of 430 bp fragment for nptII specific primers and 800 bp fragments for cry2AX1 gene 

specific primers respectively. No amplification was recorded in non-transformed plants.  

 

 Fig 3a: PCR analysis of putative tomato cv. Arka Vikas transformants transformed with pC2300-2AX1 for 

the presence of nptII  gene 

Fig 

3b: PCR analysis of putative tomato cv. Arka Vikas transformants transformed with pC2300-tp2AX1 for 

the presence of cry2AX1 gene. 

ELISA Analysis  
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PCR positive plants were further subjected for the quantification of the insecticidal Cry2AX1 

protein by using quantitative ELISA Kit. Nine were found to be positive for the expression of cry2AX1 

and the concentration of Cry2AX1 protein ranged from 0.022 to 0.359 μg/g of fresh leaf tissue (Table 1) 

out of twenty-eight plants. 

Table 1: Quantitative ELISA of T0 transformants of tomato transformed with pC2300-2AX1 construct 

S. NO T0  transgenic plant 
Concentration of Cry2AX1 protein 

(µg/g fresh leaf tissue)  Mean ±SD 

Mortality of H. armigera neonates 

(%)  

(Mean ± SD) 

1 T0-A.V-10 0.312 ± 0.01 89.30 ± 3.67 

2 T0-A.V-16 0.093 ± 0.00 63.77 ± 2.71 

3 T0-A.V-23 0.329 ± 0.01 90.01 ± 2.21 

4 T0- A.V -29 0.311 ± 0.03 88.39 ± 2.41 

5 T0- A.V -39 0.022 ± 0.01 16.67 ± 0.17 

6 T0- A.V-40 0.057 ± 0.01 36.67± 0.01 

7 T0- A.V -44 0.267 ± 0.03 67.67 ± 1.90 

8 T0-A.V-56 0.359 ± 0.03 90.00 ± 2.11 

9 T0- A.V -72 0.269 ± 0.03 66.67 ± 0.81 

10 Control 0.0                   0.0 

Insect Bioassay 

The mortality of neonates on T0 plants ranged from 16.67 to 90 per cent, whereas the control plants 

showed no mortality (Table 1). There was growth inhibition in surviving 

larvae and a high reduction in leaf area feeding was observed in the ELISA positive 

plants whereas larvae released on control plants were alive with normal growth (Figure 

4) 
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Figure 4: Detached leaf bit bioassay against H. armigera in transgenic tomato plants expressing Cry2AX1 

protein. 

4.0. Discussion  

Tomato, which is regarded as a genetic model for improving dicotyledonous plants is still regarded as a recalcitrant 

crop for transformation [16]. The average transformation frequency recorded ranged from 6.2 - 10.4% depending on 

regeneration protocol, transformation procedure and genotype [17]. In this study, a total of seventy six putative transgenic 

plants were regenerated with a regeneration efficiency of 15.17% and a transformation efficiency of 36.84 %. Most published 

protocols for tomato transformation [18, 19, 20, 21] had described co-cultivation of the explants with various 

Agrobacterium strains (LBA4404, C58C1, GV311SE or A208) for 48hrs with bacterial densities ranging from 108 to 5.0x 108 

cells/ml gave variable transformation efficiencies ranging from 3.5 to 28 % with different cultivars of tomato. The 

regeneration frequency obtained in this study is low when compared to the results of other earlier workers like 

Rajesh et al. [22] observed transformation efficiency of 58 per cent when using the medium supplemented with zeatin 2 

mg/l and IAA 0.1 mg/l in tomato cultivar Arka Vikas. This disparity in transformation efficiency of tomato is subject to 

many factors such as the cultivar, type of explants and its age, Agrobacterium strain and its density, co-cultivation time 

and regeneration medium [3, 23]. Also, frequency of transformation may change with the actual exercise. 

Twenty-eight were confirmed positive for the presence of the gene of interest out of the seventy-six regenerated 

plants and subsequently only eight were found to contain Cry2AX1 protein, ranging from 0.022 to 0.359 μg/g of fresh 

leaf tissue. A wide range of Bt protein expression in transgenic plants were reported by several earlier workers and 

independent plants of same genetic background and gene construct show greater differences in the level of 

expression. The fluctuating level of Cry2AX1 protein detected among different transgenic lines could be envisioned 

for the relative location of the integrated T-DNA into the genome, called position effects, also the chromatin 

structure; methylation state; post-transcriptional regulation and copy numbers [24,]. Furthermore, truncations and 

rearrangements have also been reported to impact the expression of the transgene [7]. The study also recorded many 

transgenic lines which were positive by PCR but did not have expression of Cry2AX1 protein at all this could be due 

to the total inactivation of the gene because of its integration into highly repetitive DNA region of the plant’s genome. 

Integration site of transgene in the genome may have a negative effect on its expression. Significant differences in the 

level of expression of the Bt protein among the transgenic T0 plants have been reported earlier [16, 22, 25]. 

A positive correlation was observed between the level of Cry2AX1 expression and mortality and reduction in feeding 

against H. armigera larvae. Such positive correlations between expression level of Cry protein and insect mortality 

have been reported in many studies [26, 27]. In the present study, the level of expression of Cry protein also showed a 

positive relationship with insect mortality. Differences in the level of mortality observed among the different 

transgenic lines could be ascribed to variation in the level of Bt gene expression. The surviving larvae on transgenic 

lines showed severe growth inhibition and significant differences were observed in the mortality percentage of 

neonate larvae between the transgenic and non-transformed tomato leaf bits.  

5.0. Conclusion  

A chimeric Bt gene, cry2AX1, was mobilized into tomato through Agrobacterium – mediated 

transformation method and tomato plants expressing the gene were generated. Significant mortality of H. 

armigera neonates was observed when exposed to the developed transgenic tomato leaves. This 

establishes that Cry2AX1 could be one of the most effective Bt genes against lepidopteran insect pests of 

tomatoes. 
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