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Abstract 

Lake Chad and its river basins are sources of water and sustainable lively hood of the growing population of the 

area. The dwindling water resources of the once thriving Lake Chad region has been attributed climate change 

phenomenon. These has contributed to the conflict in North-Eastern Nigeria and the neighbouring countries of Chad, 

Cameroon and Niger republic. In this paper, we used Google Earth Engine, a big data application platform with 

artificial intelligence to model potential rice-growing land areas within the basin and also characterize the land use 

and climate change dynamics of the area. The study deployed optical Satellite Remote Sensing using the Synthetic 

Aperture Radar data sets from the European Copernicus program to derive a climate-smart agricultural model for 

rice production in the study area. Accuracy assessment with field data for both land use, and land cover 

characterization and the modelled potential land for rice cultivation was 72% and 75% respectively. Modelled 

potential land for rice cultivation was 92658 square Kilometre (9,265,800 HA) while the calculated yield for rice is 

5,618,686 tons. 
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Introduction  

In this era of digitization for climate-smart agricultural productions, Satellite Remote Sensing offers 

scalable and unbiased technology for predicting paddy rice production areas and yield.  Several Satellite 

Remote Sensing technologies are available with various spatial and temporal resolutions and have been 

deployed as a support system for agricultural productions. Similarly, agroecological data such as soil, 

temperature, humidity, and rainfall are now available at different scales, thereby enabling crop habitat 

and yield modelling. Agricultural Remote Sensing is one of the backbone technologies for climate Smart 

Agriculture/precision agriculture [1]. The goal of agricultural remote sensing is to generate spatially 

varied data for Climate Smart Agricultural operations. Remote Sensing application to Climate Smart 

Agricultural possesses all the characteristics of big data [1-3]. 

 Emerging technologies like geospatial technologies, the Internet of Things (IoT), big data analysis in 

conjunction with artificial intelligence (AI) could be used to make management decisions that increase 

crop production. Big data or data science applications in the field of environmental sciences using 

artificial intelligence is therefore a new field of study that integrates advances in spatial science with 

Artificial Intelligence (such as deep learning), and data with high-performance computing [4, 5].  The 

deployment of Artificial Intelligence with Satellite Remote Sensing is transforming precision agriculture 

across the world through the power of analytical techniques, modelling and accurate predictions of crop 

suitability, thus increasing the demand for its use and application to climate-smart agriculture. From in 

situ field data gatherings, acquisition of Satellite Remote Sensing (SRS) images, pre-processing and 

processing of satellite images, and analysis and modelling for CSA, all these are characteristics of big data 

applications and are critical to the success of precision agriculture. The availability of biophysical and 

climate data coupled with the temporal frequency of satellite image collections and delivery, and a 
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myriad of computational tools capable of processing large volumes of big data have enabled the 

application and deployment of big data to crop suitability mapping [3].  Satellite Remote Sensing data has 

been used in several research studies to map rice growing areas, and these studies have been conducted 

in a variety of locations and with great accuracy [5, 6].  For example, [7, 8] used the time series Synthetic 

Aperture radar to map rice growing areas in Asia with 83% and 85% accuracies. Similarly. [9] deployed 

Sentinel radar data and Sentinel 2 Multi pectral images to discriminate rice growing areas in Ethiopia 

with 71% accuracy. 

Nigeria has the largest population in sub–Saharan Africa, the majority of which inhabits the Guinea 

Sahelian region of Northern Nigeria. The continuous population explosions have pressure on the natural 

resources of the Sahelian region and the country as a whole.  Similar occurrences of the pressure on the 

natural resources are the same for neighbouring countries of Niger, Chad and Cameroon. Climate change 

vagaries such as drought, and inadequate rainfall characterise the Guinea Sahelian region of the west 

African region.  The Lake Chad, basin and its tributaries are the major natural resource common to the 

West African countries. The increase in the livelihood of the inhabitants of the basin region through the 

exploitation of agricultural potentials has been studied by various authors and organisations.  

Nigeria's agricultural environment is evolving as a result of increased government initiatives to 

encourage private sector participation and improve domestic production [10].  Rice is a staple food in 

Nigeria, consumed across socioeconomic classes and geopolitical zones. Rice consumption is increasing 

rapidly in Nigeria owing to factors such as increasing population, increase in income levels, rapid 

Urbanisation, population growth and the shift in consumer preference towards rice consumption [10]. In 

natural resource accounting, a country’s information on agricultural production is part of the key 

accounting system for management and policy purposes.  As a result, accurate and timely subnational 

data on rice acreages, seasonality, and yield are crucial for many nations' national accounting processes, 

but the current system might not be able to meet information needs for food security and policy [8].  It is 

of increasing importance to develop efficient methods for mapping paddy rice in the Lake Chad basin. 

This study, therefore, aims to determine the potential paddy rice growing areas in the Lake Chad basin 

using Satellite Remote Sensing images. 

Material and methods  

The study area  

 Lake Chad Basin is located in the Sahelian region of Sub Sahara Africa by the ssouthern edge of the 

Sahara Desert. Adjudged to be one of the largest sedimentary groundwater basins in Africa extending 

over an area of about 2,381,000 km²[11-14]. The Lake Chad basin from the Nigerian side has three major 

rivers forming the basin, they are Hadeja river; the Jamare River and Ngada river.  The Hadeja river rises 

from the plain of Kano and north-eastwards meeting the Jamare River flowing from the Jos Plateau. Both 

rivers confluence at the Hadeja wetlands before flowing into the Lake Chad. While the Ngada River, 

situated in the plain of Borno flows directly into Lake Chad. The three rivers form two main basins for 
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agricultural productions within the Nigerian territory.  The rainfall of the basin ranges from 1300 

millimetres per year in Jos Plateau to less than 500 millimetres in the northeast of the basin [15, 16]. 

 

 
Figure 1: Map of the tributaries of the Lake Chad basin 

2.0 Methodology 

The methods used in this study are divided into three parts, namely:  

2:1 Data collections  

Field data on paddy rice farming were collected during the growing seasons of 2019, 2020, and 2021 

across the six states of the Lake Chad basin in Nigeria. Data collected were divided into training (70%) 

and validation (30%) data sets. Both training and validation data were used to train, classify and validate 

the Sentinel 2A multispectral satellite image in the Google Earth Engine platform.   

2:2 Big data and artificial intelligence deployment through the Google Earth Engine platform.  

Google Earth Engine (GEE) is the platform for big data deployment for Climate Smart/ Precision 

Agricultural modelling. GEE is a cloud computing platform for Remote Sensing applications to CSA.  As 

a cloud computing platform, GEE is efficient in storing, accessing, and analysing datasets using powerful 
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servers. The platform provides access to vast arrays of freely available multi-temporal SRS datae, 

geospatial infrastructures for storage services, and analysis using artificial intelligence and machine 

packages for big data analysis [17, 18].  Artificial intelligence (AI) methods are a critical enabling 

technology for automating the interpretation of SRS imageries, therefore the integration of AI methods 

into GEE represents a promising path toward operationalizing automated RS-based monitoring programs 

[18, 19]. 

In this study, the European satellite images,  Sentinel-1A Synthetic Aperture Radar (SAR) and  Sentinel-2 

multispectral sensor (MSI) images were integrated to map the paddy rice field extent of the Lake Chad 

basin in Google Earth Engine. Sentinel-2A MSI with a spatial resolution of 10 m has 13 bands, with four 

bands (blue, green, red and NIR). The Sentinel 1-A images used were acquired in the Interferometric 

Wide Swath (IW) imaging mode with the VV and VH polarizations. A random forest algorithm was 

applied to identify the optimal node for  discriminating  rice field and other Land Use Land Covers. The 

map from the Sentinel-1A image was integrated with Sentinel-2A image products (Normalized 

Difference Vegetation Index (NDVI) to improve the classification accuracy.  Figure 2 below detailing the 

workflow for the rice modelling with satellite remote sensing in Google Earth Engine with JavaScript.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overview of the pathway to modelling Paddy rice areas with satellite remote sensing in the 

lake Chad basin. 
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Results  

Accuracy assessment with field data for both land use, and land cover characterization and the modelled 

potential land for rice cultivation was 80% for rice and 79% for other land classes respectively. Overall 

accuracies, producer accuracy and kappa coefficient were significantly high (Table:1). Modelled potential 

land for rice cultivation was 92658 square Kilometre (9,265,800 HA) while the calculated yield for rice is 

5,618,686 tons (Table 2). 

Table :1.  Accuracy assessment of the classified map  

  Rice Other land uses  Total User accuracy 

Rice 3120 325 3455 80.5% 

Other land uses 47 6475 6522 79.2% 

Total 3167 6800 9967  
Producer accuracy 89.50% 85.2    86.30%   

Overall accuracy    81.50%   

Kappa     84.30%   

       

 

  

 

Th areas mapped for rice productions for eacg of the basin states as shown in table 2. Modelled potential 

land for rice cultivation was 92658 square Kilometre (9,265,800 HA) while the calculated yield for rice is 

5,618,686 tons. 

 
Figure 3: Modelled rice production areas in the seven states of the Lake Chad Basins 
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Table 2:  Potential rice production areas and estimated yield  

SN State 
Total land 

mass 

Modelled and validated 

areas for rice productions 

Potential Rice 

production estimates 

1 Bauchi 45,965 6,895 489,545 

2 Borno 70,898 10,634 755,014 

3 Jigawa 23,154 6,946 493,166 

4 Gombe 52,142 4,894 347,474 

5 Kano 499,062 38,888 2,761,048 

6 Yobe 45,502 15,102 107,210 

          Total 92,658 5,613,686 

 

Monitoring Rice Pheneology with Satellite Remote Sensing Spectral Variables   

The characteristic of NDVI derived from SRS for assessing the agricultural practices (planting, growth 

and harvesting period) of rice were analyzed in the study areas.  Also, the effectiveness of the NDVI in 

assessing soil surface statuses during transition periods in relation to the flooding regime was of special 

interest. The results obtained indicate the occurrence of two annual cycles for rice planting and 

harvesting in the study area. The rain feed the rice planting season and the flood plain rice planting 

regime. The ooccurrence of two intra-annual cycles is an indication of the existence of two planting 

seasons in the study area (Figure 4). 

 

Figure 4: Time Series of Rice Cultivation with EVI 

Relationship between Satellite Remote Sensing (SRS) derived spectral indices for rice and other 

essential variables associated with rice cultivation.  

The Normalised  Vegetation Indices a satellite remote Sensing spectral indices associated with plant 

vigour were used as surrogate variables for rice field training data while precipitation and soil 

components (i:e,  soil organic carbon, Soil Bulk density,  soil Nitrogen, soil PH and soil carrying 

capacities) are the basic components required for agricultural productivity. The variables were extracted 
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from Google Earth Engine platforms. The relationships between NDVI and other variables were 

determined with the aid of a correlation matrix.  Results from the correlation matrix indicated a range of 

positive relationships between NDVI and the soil variables (Figure 5).  

 

Figure 5: Correlation matrix between NDVI, Precipitation and soil variables.  

 

Discussions and conclusions  

By 2050, it is predicted that food production will need to expand by 60–100% to be able to supply the 

nutritional needs of a population of 9–10 billion people [3]. One of the major ways to achieve this is 

through the use of AI and Satellite Remote Sensing (SRS) for Climate Smart Agricultural productions. The 

deployment of Satellite Remote Sensing with other ancillary data has the potential to predict/ determine 

suitable areas for agricultural production, monitor crop health and forecast yield. Rice has become one of 

Nigeria's staple foods, although domestic production is low due to subpar technical efficiency, and as a 

result Nigeria has to resort rice importations to balance for the shortage in local production [10, 20]. Thus 

making Nigeria the largest importer of rice in  Sub-Saharan Africa. Self-sufficiency in rice production has 

been made a priority policy to minimize importation. The Hadeja-Jamare wetland become the hub of rice 

production in the region. There are however other areas within the basin that has similar environmental 

factors for supporting rice production.  

 Big data and artificial intelligence applications to all area of human endeavour (Agriculture inclusive) 

have become an essential component of mankind.  While its application has been fully integrated into 

Climate Smart Agriculture in the developed world, the developing world are still lagging in the 

deployment of Artificial Intelligence to Climate Smart Agriculture. It is imperative therefore to fully 

integrate big data and AI into the Sub-Saharan Climate Smart strategy to enhance food security.  
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